Ancient York Cemetery Sheds Light on the Roman Empire

Located approximately 300km north of London, the city of York was a major Roman outpost close to the northern border of their British domain. The area had been populated since approximately 7000 B.C., but the city itself was founded as Eboracum in 71 A.D. when it became a Roman fortress and settlement. For hundreds of years, the city was presided over by a series of emperors. However, after the fall of Rome, the city was overrun by the Angles in the 5th Century.

An ancient Roman cemetery was discovered in 2004 in the gardens of Driffield Terrace as they prepared to develop the property. The York Archeological Trust excavated the site and was more than a little surprised to find 80 sets of remains from the Roman period dating from the early second century to the late fourth century A.D. The cemetery is located on what would have been the outskirts of Eboracum, across the river from the Roman fort.

The remains were determined to be those of Roman gladiators based on several details. The bone structure of the individuals indicated that they were all men of less than forty-five years old and of large stature with heavy muscle attachment points, indicating a muscular physique. Remodeled bone told the tale of significant battle trauma and one set of remains even showed signs of a large animal bite, likely a lion or bear from the gladiatorial ring.

In 2010 testing was done on some of the bones based on strontium isotope analysis and it was determined that the individuals studied likely came from diverse areas and were not all of British origin. Of the eighteen individuals tested, only five came from York. The remaining thirteen came from outlying areas of Britain, mainland Europe and the parts of the Mediterranean, and the Middle East. Traces of carbon and nitrogen in the bones also led the team to the conclusion the gladiators ate a very different diet than the majority of the population of York, confirming the theory that they came from different geographical origins. A number of the skeletons had been decapitated and the skulls buried with them on their chest, between their legs, or at their feet.

However, at the time, scientific techniques to identify the exact origins of the men didn’t exist. But current day cutting-edge genome wide analysis now allows for the level of precision and analysis required to identify genealogical locations. Researchers from Trinity College Dublin selected seven skeletons for testing. Of these seven, six were found to be of British origin and related to the modern Welsh people, suggesting a migration from the area with the arrival of the Angles in the fifth century. The remaining skeleton however was radically different, and researchers matched his DNA sequences to the Middle East, specifically to Palestine, Jordan or Syria.

This is the first definitive evidence of the scope of the Roman Empire and the movement of troops within it. In a time where mobility of troops was an enormous proposition, it is clear that some of the centurions were very well travelled. The study also confirms the multi-ethnic composition of the Roman Empire.

Photo credit: York Archeological Trust

How an Astonishing Evolutionary Trick Could Lead to a New Cancer Treatment

This post might be a little inside baseball and angled toward the science crowd, but I ran across a very interesting story this past week that I wanted to share. It had to do with how a surprisingly small change in DNA sequences in the earliest single-celled organisms not only lead to multicellular organisms, but to the diversity brought on by sexual reproduction, and could possibly even lead to a new treatment to one of mankind’s worst diseases, cancer.

We all know that life evolved on this planet, first from individual molecules, to organized clusters, to single-celled organisms, and finally to multi-celled organisms. For anyone who sat through science class, this is simply an accepted truth. But the enormity of that truth got a little wake-up call in a paper, recently released in the on-line journal eLife. Given the fact that we seem to be the only life in the universe (that we know of so far; statistics tells us it’s VERY unlikely that Earth holds the only living creatures), one would think that it was a complex progression of steps that moved us from single celled organisms toward the path of the complicated multi-cellular organisms that call this planet home.

In fact, it only required a single mutation in one gene.

That something so complex came from only something so rudimentary seems hard to believe. And the way the team of Dr. Thornton et al. discovered this is extremely clever. The key to multi-cellular organisms, especially those with discrete tissues and organs, is communication and coordination between cells, especially in terms of cell division relative to their neighbours. A crucial aspect of this division is the mitotic spindle—the cellular structure that assists in lining up chromosomes during mitosis (see below in profase, metafase and anfase in blue). The orientation of the spindle is paramount—cells that lose their mitotic orientation often become cancerous—and is controlled by a protein called a ‘scaffolding protein’.

They used a process called ancestral protein reconstruction—taking current sequences of scaffolding protein from modern single-celled organisms and computationally tracing it backwards over 600 million years to determine what it’s sequence might have been at that point in evolution. Through genetic manipulation, modern cells were then made to produce those ancient proteins, so scientists could see how these single-celled organisms interacted.

They selected choanoflagellates for their experiments—single-celled organisms that are known to work together as a group to form a ball, heads together, to assist with feeding.

As they studied this organism, an amazing thing happened. The early forms of the scaffolding protein functioned as an enzyme (a protein that assists in biochemical reactions without itself being changed in any way), and this protein mutated at a single amino acid site and became entirely repurposed. It now functioned to communicate with other proteins by binding with them, and specifically bound the marker proteins on the edges of the cell that anchored the spindle and directed its orientation. Cells that previously existed singly, suddenly started to work together. The researchers theorize that these proteins, or ones similarly mutated, are still found in all complex organisms, including humans.

So, this is all nice, you say, but how is this relevant to us today? It could be extremely relevant. Remember how cells that lack the appropriate scaffolding proteins could become cancerous? Researchers hope that by identifying how such cells stop communicating, they may perhaps be able to develop new therapies to fight the awful disease. Considering the greats we’ve lost recently to cancer—David Bowie, Alan Rickman, René Angélil, Daniel Dion, and Dan Haggerty, not to mention those near and dear to each of us personally—such a treatment couldn’t arrive a moment too soon.

Photocredit: Wikimedia Commons by LadyofHats and Wikimedia Commons by Stephen Fairclough

 

Technological Innovations in Criminal Justice

Here at Skeleton Keys, I'm approached on a fairly regular basis by people who want me to help them highlight a program or personal cause. Unfortunately, most of the time, this material isn't directly related to any of our usual topics of forensics, forensic anthropology, writing, or history. But last week, I was approached with an infographic from the Boston University Master of Criminal Justice program. Not only was the infographic a fascinating look at past and current forensic techniques, but it was produced by Boston Universityour series readers know all about B.U. as it is the workplace of Dr. Matt Lowell and the location of all the lab scenes in our books. So I was more than happy to share this post with our readers.


Welcome to the New Skeleton Keys!

squarespace-logo-horizontal-white.jpg

What better time to do a makeover than at the beginning of a bright shiny new year? I’ve wanted to overhaul my website for a while, but finding time to do it was the issue. Not that the Christmas holidays are exactly overflowing with spare time (as if!), but I had two weeks off from the day job so I only had the writing job to contend with and our editor, bless his heart, hasn’t gotten our manuscript for LONE WOLF back with his comments yet. And while we’re already starting to think about book 2 in the series, we haven’t actually jumped in yet. So in the week between Christmas and New Year’s Day, I spent a lot of time upgrading my Squarespace 5 site and to the current Squarespace 7 platform.

Why take all the time to move to a new site? It’s true the new version 7 templates are really nice and clean, but the real reason for me is the fact that in this day and age, when visitors are as likely to read on a phone or tablet as a 15” laptop or a 24” flat panel screen, the new version is completely mobile responsive, so no matter what screen size and dimension, it will instantaneously respond and resize for the best viewing experience for both text and pictures.

Also, this year will mark the launch of the FBI K-9 Mysteries written under our pseudonym of Sara Driscoll, and I wanted to have a fresh landing location for our new readers. The main site remains jenjdanna.com (though jendanna.com will also get you there), while saradriscollauthor.com will take you directly to the expanding materials around the FBI K-9 books inside the site.

For those of you who read the blog through the RSS feed, you'll have to make a little change. The new RSS feed can be found by clicking below:

So it seemed like a great time to make the leap to a new and improved site. Many, many thanks to the crack support team at Squarespace (including Anthony, Ariela, Jordan, Erin, Thomas, and Kate) for going above and beyond to make sure that my import and redesign went absolutely smoothly. Honestly, folks, if you are looking for great web hosting with amazing support, this is the team for you.

Welcome to 2016 and to the new Skeleton Keys!