Forensics 101: First Archeological Evidence of Buckshot Injuries

Battlefield momument

Battlefield momument

This story is kind of a fun one for me. Not only is it research coming out of my university, but it’s a battlefield site that’s only about 20 minutes from home.

The Battle of Stoney Creek was one of the earlier battles of in the War of 1812 (1812 – 1815). Following the American victory in the Battle of Fort George in Niagara-on-the-Lake, 3,400 American troops camped for the night in Stoney Creek. Even through the British only had 1,600 men, reconnoitering showed them the Americans were badly organized and only thinly sentried with an elongated, broken line of encampment. This was true; in fact, when the battle started, only 1,328 American soldiers out of the total 3,400 were positioned to join the fighting.

Armed with muskets and bayonets, 700 British troops left their camp at 11:30pm, killing the few sentries on duty before moving in to start the battle proper. However, the Americans held the high ground, firing a variation of the traditional ‘buck and ball’ down onto the British, having loaded their muskets with 12 buckshot balls, essentially turning them into shotguns. The Americans held their position and were well on their way to victory when a gap formed in their line, leaving their artillery unprotected and allowing their guns to be taken and their men killed by the British. In fact, the chaos from the lack of light and the uncharacteristic close-quarters fighting led to American officers coming to investigate what they assumed was a commotion produced by their own men. Instead they were taken prisoner by the British. Without direction from their generals, the American soldiers started to wander aimlessly in the dark and many were cut down by their own countrymen. In the confusion, the Americans pulled back to end the battle, unaware they still held both the superior position and number of men. They retreated back to 40 Mile Creek in Grimsby and then finally back across the Niagara River to U.S. soil, never venturing as far into Upper Canada again. The battle only lasted 45 minutes, but by the end, 39 men were dead, 174 were wounded and 152 were captured. Many of the soldiers were quickly buried on site in a mass grave.

In 1899, farmer Allan Smith unearthed human remains and pieces of cloth bearing both the British and American insignias while plowing his land. That area, now called Smith’s Knoll, was finally excavated in 1998 and examined. The excavation revealed 2701 co-mingled skeletal components from 24 individuals. Skeletal remains showed signs of sharp force and projectile trauma, as well as perimortem (at time of death) fractures. In the past, bone injury from musket balls has been well documented, but archeological buckshot injuries had yet to be verified. Whether the dearth of information of this type of injury comes from a lack of evidence (as the British did not use this type of ammunition; it was only used by the Americans) or because there is simply less bone damage and more associated soft tissue damage from buckshot is unknown.

We’ve shown the damage modern bullets can do to bone, but 0.65 caliber musket balls and 0.31 caliber buckshot of the early 19th century were very different: Made of soft lead, projectiles would often become misshapen upon striking the body. Buckshot especially would often become so misshapen, it could penetrate the body, but could not pass through it. As opposed to modern bullets, lead balls and buckshot would only glance off bone, or penetrate enough to become embedded. High-velocity, through-and-through, jacketed ammunition would not exist for another 50 years.

Smith’s Knoll Scapula with buckshot defect.

Smith’s Knoll Scapula with buckshot defect.

Researchers at McMaster University experimented with cloth-encased butchered pork as a substitute for a fleshed human hip in a soldier’s uniform, test firing both the traditional-for-the-time ‘buck and ball’ (a musket ball with 3 smaller buckshot) and buckshot only (with 12 buckshot per cartridge). Their results indicate that some injuries seen in the Smith’s Knoll remains came from buckshot injuries. Instead of the sharply angled, penetrating defects we’re familiar with today, many of the defects were no more than minor depressions, indicative of a low-velocity projectile that has spent most of its energy penetrating cloth, skin and muscle before striking bone. Some bones had multiple defects, clustered close together, indicating buckshot fire from close range, not allowing the buckshot to separate as it left the musket and flew through the air. Due to the known history of the battle, it is impossible to tell if the skeletal remains are those of British soldiers cut down by American militia, or militiamen felled by friendly fire.

The War of 1812 is a curious thing. It went on for nearly three years, and is considered to this day by Britain to be a minor part of the Napoleonic Wars. The British torched the White House in 1814 and kept the Americans at bay during a number of decisive battles in Southern Ontario (does anyone but a Canadian know the name ‘Laura Secord’?) avoiding being annexed to the United States, but didn’t fare well in fighting in New Orleans or Baltimore. By 1815, when the Treaty of Ghent was signed to bring an end to hostilities, nearly 20,000 men were dead, a military stalemate was called, and the borders remained exactly where they were. However, due to the lack of clear winners or losers, no bad feelings persisted and friendly trade immediately resumed.

Photo credit: Wikimedia commons by Nhl4hamilton and L. Lockau et al

Disease Resistance: Could You Be A Mutant?

It’s a story right out of one of the X-Men movies—people who are born with genetic differences that give them an evolutionary advantage over their fellows. In this case, that advantage is over catastrophic disease.

We’re all familiar with how most disease research is accomplished: scientists study those who are afflicted with a particular disease to see how it affects them overall and how it affects their individual biological systems. But Dr. Stephen Friend of Sage Bionetworks in Seattle led a team of scientists from New York’s Icahn School of Medicine at Mount Sinai on a different tack—to study individuals who should suffer from or should have died from disease, but never became sick in the first place. To do this, they examined the genetic profiles of nearly 600,000 subjects from 12 previous genetic studies and looked closely at 584 Mendelian diseases (diseases caused by single gene mutations that are inherited according to Gregor Mendel’s Laws).

Mendelian genetics is the type of genetics most high school students studied in biology class. Remember Punnett squares? That’s Mendelian genetics—gene traits that are dictated by the alleles of a single gene. Let’s review and look at a very simplified version of eye colour. If a parent has brown eyes, they are expressing the dominant allele of the eye colour gene, which is brown (B). But everyone has two copies of that gene, one donated from their mother and one from their father. Because of the dominant brown allele (B), the second allele could be a second dominant brown allele (B) or a recessive blue allele (b) masked by the dominant brown. In high school biology terms, this parent could be BB, or Bb; both allele pairs would result in brown eyes. Only a parent with blue eyes is guaranteed to be bb, because two recessive genes will allow the recessive colour to show instead of being masked by the dominant colour. But if you pair two brown eyed parents, both of whom come from a brown eyed and blue eyed parent themselves, you will have two parents who are Bb and the below Punnett square shows what their offspring statistically should look like.

This is my husband and I exactly. Both ours mother have brown eyes, both fathers have or had blue eyes, but we both have brown eyes, therefore, we must both be Bb. We have two daughters, one with green eyes (genetically blue in this simple example; the green colour comes from additional masking gene alleles) and one with brown eyes.

Mendelian diseases are similarly governed by a single mutation on a single gene. Some of the diseases they looked at were Cystic Fibrosis (a disorder of the exocrine glands that affects the lungs, pancreas, intestine, liver, and kidneys), Smith-Lemli-Opitz syndrome (a mutation in the cholesterol pathway which leads to significant developmental delays or even death), epidermolysis bullosa (a devastating blistering skin condition), familial dysautonomia (a disorder of the nervous system), and Pfeiffer syndrome (which causes the bones in the skull to fuse early, leading to a misshapen head, bulging eyes and abnormal brain development). And what researchers found both surprised and delighted them. Of the 589,306 subjects tested, looking at 874 genes that guarantee the development of disease, they found 13 individuals who genetically had one of the mutations and yet had no indications of disease. For all intents and purposes, they are resistant.

Yes, I hear you cry: 13 people out of 589,306? That’s only 0.0022%, so what’s the big deal? The big deal is the answers these people may hold. Why aren’t they sick? What is it about their genetic makeup that counteracts a devastating mutation that might have already killed them otherwise? Discovering those secrets could potentially help the 70,000 people worldwide living with Cystic Fibrosis, desperately waiting for lung transplants while fighting trying to take their next breath. It could help the more than 500,000 people worldwide who suffer from epidermolysis bullosa, whose skin blisters and peels off at the lightest touch, and who can die from cancer or from infection of the exposed derma.

It's clear that 13 subjects are not enough to power any kind of real scientific study, but they are a promising start. Scientists now hope to recruit healthy volunteers that are willing to share their genetic information. Interested? Then the Reliance Project may be for you. Stop by the site, and take a look and join me in signing up. As they say at the Reliance Project: ‘Join the search. Be a hero.’ You might just save a life along the way.

Photo credit – Wikimedia Commons

A Second Viking Settlement Discovered in North America

Newfoundland coastline

Newfoundland coastline

Last week, we talked about the science of space archeology, and how, with the help of high resolution satellite scans taken 400 miles above the earth, a well-trained and intuitive eye can discern archeological sites hidden on the earth’s surface. This week, we’re going to talk about Dr. Sarah Parcak’s latest amazing discovery based on this technology.

The Vikings were a group of Scandinavians, first known for their international trading, but later known universally for their violent raiding of other lands and cultures. They were groundbreaking nautical engineers for the time and their carefully crafted vessels allowed them to travel from present day Norway, Sweden, and Denmark to Britain and Scotland, Russia, Turkey, Iran, and even all the way to North America.

The Vikings used water to move between locations, be it rivers to move through Europe proper or the Atlantic Ocean and Mediterranean Sea to go further. Starting in the 8th century, they set out to trade with peoples in other lands, but quickly learned that it was more successful and lucrative to simply raid those lands instead. They spread across the north Atlantic, moving from Scotland to Iceland, and then to Greenland.

But how did they so successfully set off into the unknown, and not be lost forever at sea? The Vikings were not only expert naval engineers, but were also expert navigators. They learned how to be able to detect land up to 50 or 60 miles away, simply by watching distant clouds, identifying sea birds out for a day of fishing, or by the smell of grass and other plants, carried by the strong sea breezes.

One of the great Viking explorers was Erik Thorvaldsson, better known as Erik the Red. Erik was part of an Icelandic settlement before he was exiled for three years in 982 A.D. after he murdered several members of the settlement. He and his men set sail, only to discover Greenland. It was Erik’s son, Leif Erikson, who is credited with the discovery of North America. He and his men sailed from Greenland, but were caught in a storm and driven due west, where they discovered a previously unknown coastline. Scholars studied the Viking texts of the time and believe Erikson found Baffin Island in Canada. From there he sailed south, down to Labrador, and then to Newfoundland.

In 1960, the only officially designated North American Viking settlement was discovered in northern Newfoundland. Archeologists called it L’Anse Aux Meadows, and found there the foundations of traditional Viking longhouses for approximately 90 people, and traces of metal works, a technology native Canadians did not have at the time. But archeologists also found something they could not explain—seeds from a plant that only grew hundreds of kilometers south of that site, leading them to believe that there must have been at least one other settlement south of L’Anse Aux Meadows.

Dr. Sarah Parcak, an archeologist at University of Alabama at Birmingham and the director of the Laboratory for Global Observation, took on the challenge of trying to find this new settlement. Using the Worldview satellite that resolves images down to 10”, she examined the Newfoundland coastline. To do this, she studied near infrared scans after processing them for false colour to pick up differences in the vegetation—indications of decreased health of plants visible in the near infrared frequency could indicate the presence of foundations or other man-made objects below the surface.

Dr. Parcak found a potential site at Point Rosee, Newfoundland. Located on the west-facing coast on the southern edge of Newfoundland, it lies 370 miles southwest from L’Anse Aux Meadows. Among other possible structures, she identified a rectilinear shape with the same dimensions as a longhouse found at L’Anse Aux Meadows. This was a very strong indication that Point Rosee could be a related archeological site.

The first step for Dr. Parcak’s team was to do a non-invasive survey of the area, which they accomplished using a magnetomer to detect subtle differences in magnetism of the scanned soil. The magnetomer will not only  indicate the presence of metals but it will also provide evidence of burning or soil disturbances. A number of ‘hot spots’ were discovered and compared to the satellite  scans. It was this successful comparison that earned the team a two week test excavation to see if the they could find any physical evidence of a Viking settlement.

After surveying and gridding off the area to match the terrain exactly to the satellite images, the team dug several test trenches. It was backbreaking, muddy work, but they discovered several items of interest: some seeds, possible fragments of metal work, some clumps of what the team thought might be slag (a byproduct of metal work and a significant indicator of Viking activity), and darkly striped soil seen before in other Viking sites from their use of slabs of turf to insulate buildings.

In the end, the seed was determined to be from the 17th century and archeologists had to admit it could have filtered down into the extremely moist soil hundreds of years later. But it was the suspected slag that ended up as the crucial evidence. While it wasn’t actually slag—it was fire roasted bog ore—it represents a step in preparing ore for metalwork and is indicative of the presence of a group of people with skills different from the resident aboriginals of the time.

It is this single piece of evidence that will now set the course for future excavations. It is a very strong possibility that a Viking settlement occupied Point Rosee over a millennia ago, a full 500 years before Columbus sailed west to ‘discover’ a land found and temporarily settled by other Europeans centuries before. Dr. Parcak and her team hope to shine a light on a time period that is still mostly a mystery, expanding on the history of a new land, as well as the saga of a lost people.

Photo credit: Kenny Louie

Forensics 101: Space Archeology?

A new term came to my attention last week, one that on first glance seems a bit of a misnomer. It came tied to a really neat story, so we’re going to look at the scientific field this week—what these scientists do and what their work tells them—and then we’ll explore their groundbreaking discovery next week.

The term is ‘space archeology’ or, alternatively, ‘remote sensing techniques in archaeology’ (though I think we’d all agree ‘space archeology’ is WAY cooler). At first glance, one would think this is simply archeology in space, except we’re nowhere near having the skills or technology to do that. So what is space archeology? In the end, the answer is quite clever: it’s using satellite scans of the earth taken from space to identify previously undiscovered archeological sites.

The way space archeologists do their work is quite ingenious. Visible light scans of the planet’s surface may show absolutely nothing. But when infrared scans are used after being processed using false colour, chemical changes to the landscape caused by building materials and the activities of ancient civilizations are revealed. NASA’s high resolution scans are used as the raw data for the analysis, allowing scientists to discern subtle variations in the earth’s topography. The key to this analysis is grounded in vegetation—plants that live on top of stone are simply less healthy and will have reduced levels of chlorophyll. Find the unhealthy plants, and you may be well on your way to finding the site of an ancient civilization.

Enter Dr. Sarah Parcak, an archeologist at University of Alabama at Birmingham. She is responsible for the discovery of several amazing archeological sites, many of them lost for centuries or even millennia. For instance, the picture above shows an infrared scan of what looks to the naked eye like a patch of desert. But move out of the frequency of visible light and into infrared, and suddenly a network of city streets and buildings are revealed. It’s an amazing look at what hides below the earth’s surface. Which city is this? Tanis, the historical city used in Raiders of the Lost Ark, lost for over three millennia to the sands of time. So far only a small trial area has been excavated, but mud-brick structures were discovered a foot below the modern surface.

Next week we’ll be back to talk about an amazing discovery that could rewrite the early history of North America. See you then…

Photo credit: University of Alabama at Birmingham